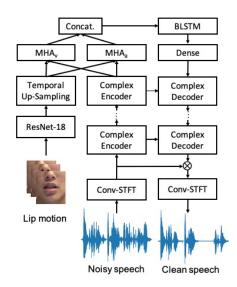
A DCCRN-BASED AUDIO-VISUAL SPEECH ENHANCEMENT APPROACH FOR THE 1ST COG-MHEAR AVSE CHALLENGE


Jen-Cheng Hou¹, Ryandhimas Zezario², Chin-Jou Li², I-Chun Chern³, Jun-Cheng Chen¹, and Yu Tsao¹

¹Academia Sinica, Taiwan ²National Taiwan University, Taiwan ³Carnegie Mellon University, USA

1. PROPOSED APPROACH

Our proposed approach is based on deep complex convolutoin recurrent network (DCCRN) [1], which has been shown to be effective for speech enhancement (SE) by predicting target complex spectrum via complex-valued operation. We incorporate additional visual information (e.g. lip motion) into a DCCRN model as an audio-visual speech enhancement (AVSE) approach for the 1st COG-MHEAR AVSE Challenge. The entry associated with this report is BioASP_CITI.

Our proposed model, AV-DCCRN, is shown in Figure 1. Noisy speech is converted into complex spectrum and processed via a U-net like complex encoder-decoder architecture, where the latent representations are processed with a bi-directional long short-term network (BLSTM). The visual features of the lip motion and the speech features are fed into cross-attention modules, which consist of multi-head attention (MHA), to better couple the audio-visual features. The training objective is to minimize a weighted sum of the scale-invariant signal-to-noise ratio (SI-SNR) loss and the *L*1 loss between the predicted speech and the clean speech.

Fig. 1. Our proposed AV-DCCRN model. MHA represents Multi-Head Attention.

2. EXPERIMENTAL RESULTS

The experimental results on the development set is shown in Table 1. We can observe that the inclusion of MHA blocks for audio-visual feature coupling can obtain a performance boost compared to naive cross-modal feature fusion. Our experimental results show the proposed model can significantly outperform the baseline model with a 40.7% and 23.8% improvement in perceptual evaluation of speech quality (PESQ) and short-time objective intelligibility (STOI), respectively. The number of trainable parameters of the proposed model is 18.6M.

Methods	PESQ	STOI
Noisy speech	1.15	0.64
Baseline	1.30	0.67
AV-DCCRN (w/o MHA)	1.62	0.81
AV-DCCRN (w/ MHA)	1.80	0.83

Table 1. Comparison of the evaluation scores of the enhanced speech on the development set. The baseline model is the one provided by the challenge organizers.

3. REFERENCES

 Yanxin Hu, Yun Liu, Shubo Lv, Mengtao Xing, Shimin Zhang, Yihui Fu, Jian Wu, Bihong Zhang, and Lei Xie, "Dccrn: Deep complex convolution recurrent network for phase-aware speech enhancement," *INTERSPEECH*, 2020.